Python编程使用NLTK进行自然语言处理详解
自然语言处理是计算机科学领域与人工智能领域中的一个重要方向。自然语言工具箱(NLTK,NaturalLanguageToolkit)是一个基于Python语言的类库,它也是当前最为流行的自然语言编程与开发工具。在进行自然语言处理研究和应用时,恰当利用NLTK中提供的函数可以大幅度地提高效率。本文就将通过一些实例来向读者介绍NLTK的使用。
NLTK
NaturalLanguageToolkit,自然语言处理工具包,在NLP领域中,最常使用的一个Python库。
NLTK是一个开源的项目,包含:Python模块,数据集和教程,用于NLP的研究和开发 。
NLTK由Steven Bird和Edward Loper在宾夕法尼亚大学计算机和信息科学系开发。
NLTK包括图形演示和示例数据。其提供的教程解释了工具包支持的语言处理任务背后的基本概念。
开发环境:我所使用的Python版本是最新的3.5.1,NLTK版本是3.2。Python的安装不在本文的讨论范围内,我们略去不表。你可以从NLTK的官网上http://www.nltk.org/获得最新版本的NLTK。Anyway,使用pip指令来完成NLTK包的下载和安装无疑是最简便的方法。
当然,当你完成这一步时,其实还不够。因为NLTK是由许多许多的包来构成的,此时运行Python,并输入下面的指令(当然,第一条指令还是要导入NLTK包)
>>> import nltk >>> nltk.download()
然后,Python Launcher会弹出下面这个界面,建议你选择安装所有的Packages,以免去日后一而再、再而三的进行安装,也为你的后续开发提供一个稳定的环境。某些包的Status显示“out of date”,你可以不必理会,它基本不影响你的使用与开发。
既然你已经安装成功,我们来小试牛刀一下。当然本文涉及的主要任务都是自然语言处理中最常用,最基础的pre-processing过程,结合机器学习的高级应用我们会在后续文章中再进行介绍。
1、SentencesSegment(分句)
也就是说我们手头有一段文本,我们希望把它分成一个一个的句子。此时可以使用NLTK中的punktsentencesegmenter。来看示例代码
>>> sent_tokenizer = nltk.data.load('tokenizers/punkt/english.pickle') >>> paragraph = "The first time I heard that song was in Hawaii on radio. ... I was just a kid, and loved it very much! What a fantastic song!" >>> sentences = sent_tokenizer.tokenize(paragraph) >>> sentences ['The first time I heard that song was in Hawaii on radio.', 'I was just a kid, and loved it very much!', 'What a fantastic song!']
由此,我们便把一段话成功分句了。
2、SentencesSegment(分词)
接下来我们要把每个句话再切割成逐个单词。最简单的方法是使用NLTK包中的WordPuncttokenizer。来看示例代码
>>> from nltk.tokenize import WordPunctTokenizer >>> sentence = "Are you old enough to remember Michael Jackson attending ... the Grammys with Brooke Shields and Webster sat on his lap during the show?" >>> words = WordPunctTokenizer().tokenize(sentence) >>> words ['Are', 'you', 'old', 'enough', 'to', 'remember', 'Michael', 'Jackson', 'attending', 'the', 'Grammys', 'with', 'Brooke', 'Shields', 'and', 'Webster', 'sat', 'on', 'his', 'lap', 'during', 'the', 'show', '?']
我们的分词任务仍然完成的很好。除了WordPunct tokenizer之外,NLTK中还提供有另外三个分词方法,
TreebankWordTokenizer,PunktWordTokenizer和WhitespaceTokenizer,而且他们的用法与WordPunct tokenizer也类似。然而,显然我们并不满足于此。对于比较复杂的词型,WordPunct tokenizer往往并不胜任。此时我们需要借助正则表达式的强大能力来完成分词任务,此时我所使用的函数是regexp_tokenize()。来看下面这段话
>>> text = 'That U.S.A. poster-print costs $12.40...'
目前市面上可以参考的在Python下进行自然语言处理的书籍是由Steven Bird、Ewan Klein、Edward Loper编写的《Python 自然语言处理》。但是该书的编写时间距今已有近十年的时间,由于软件包更新等语言,在新环境下进行开发时,书中的某些代码并不能很正常的运行。最后,我们举一个书中代码out of date的例子(对上面这就话进行分词),并给出相应的解决办法。首先来看书中的一段节录
>>> text = 'That U.S.A. poster-print costs $12.40...' >>> pattern = r'''''(?x) # set flag to allow verbose regexps ... ([A-Z].)+ # abbreviations, e.g. U.S.A. ... | w+(-w+)* # words with optional internal hyphens ... | $?d+(.d+)?%? # currency and percentages, e.g. $12.40, 82% ... | ... # ellipsis ... | [][.,;"'?():-_`] # these are separate tokens; includes ], [ ... ''' >>> nltk.regexp_tokenize(text, pattern)
我们预期得到输出应该是这样的
['That', 'U.S.A.', 'poster-print', 'costs', '$12.40', '...']
但是我们实际得到的输出却是这样的(注意我们所使用的NLTK版本)
[('', '', ''), ('A.', '', ''), ('', '-print', ''), ('', '', ''), ('', '', '.40'), ('', '', '')]
会出现这样的问题是由于nltk.internals.compile_regexp_to_noncapturing()在V3.1版本的NLTK中已经被抛弃(尽管在更早的版本中它仍然可以运行),为此我们把之前定义的pattern稍作修改
pattern = r"""(?x) # set flag to allow verbose regexps (?:[A-Z].)+ # abbreviations, e.g. U.S.A. |d+(?:.d+)?%? # numbers, incl. currency and percentages |w+(?:[-']w+)* # words w/ optional internal hyphens/apostrophe |... # ellipsis |(?:[.,;"'?():-_`]) # special characters with meanings """
再次执行前面的语句,便会得到
>>> nltk.regexp_tokenize(text, pattern) ['That', 'U.S.A.', 'poster-print', 'costs', '12.40', '...']
以上便是我们对NLTK这个自然语言处理工具包的初步探索,日后主页君将结合机器学习中的方法再来探讨一些更为深入的应用。最后,我想说《Python 自然语言处理》仍然是当前非常值得推荐的一本讲述利用NLTK和Python进行自然语言处理技术的非常值得推荐的书籍。
总结
以上就是本文关于Python编程使用NLTK进行自然语言处理详解的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站:
python中requests库session对象的妙用详解
13个最常用的Python深度学习库介绍
python爬虫系列Selenium定向爬取虎扑篮球图片详解
如有不足之处,欢迎留言指出。
python内置函数:lambda、map、filter简单介绍
lambdalambda可以理解为一种小函数,但是它是一个表达式,而不是一个语句,所以在def不允许出现的地方仍然可以使用lambda函数,例如list里。但是lambda内
用不到50行的Python代码构建最小的区块链
译者注:随着比特币的不断发展,它的底层技术区块链也逐步走进公众视野,引起大众注意。本文用不到50行的Python代码构建最小的数据区块链,简单介绍
Python自然语言处理之词干,词形与最大匹配算法代码详解
本文主要对词干提取及词形还原以及最大匹配算法进行了介绍和代码示例,Python实现,下面我们一起看看具体内容。自然语言处理中一个很重要的操作